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Abstract  

Research has suggested that there are components or devices which survive due to their 

strength. Although, these devices survive under a certain level of stress but when a higher level of 

stress is applied on them, they failed because they can’t sustain it. The likelihood that these 

components are functional during a certain level of stress under a stated condition and a specified 

operational environment is regarded as its reliability, which in reliability engineering studies can 

be used to control, evaluate and estimate the capability and lifetime of a device. 

This study aims to further contribute to the estimation of the stress-strength reliability 

parameter , where  and  are independent lognormal distributions based only on 

the first-observed lower record values. The Maximum Likelihood Estimator (MLE) of R and its 

asymptotic distribution are obtained as well as the confidence interval. Different parametric 

bootstrap confidence intervals are also proposed. Simulation and real data set representing Block-

Moulding Machine experiment data (of Tola Block industry, Lagos, Nigeria) are fitted using the 

lognormal distribution and used to estimate the stress-strength parameters and reliability. 

Empirical analysis shows that the proposed model helps to establish a proficient structure for 

stress-strength reliability models.   

  

Key Words: Lognormal Distribution, Reliability, Interval Estimation, Lower record values, 

Stress-Strength Reliability. 
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1. Introduction 

The estimation of stress-strength reliability function based on record values has attracted the 

attention of authors because of its important role in industrial tests. Record values have a great 

important role in real life problems involving data relating to several fields such as weather, 

economics and sports data. The statistical study of record values began with Chandler [8] who 

introduced the main idea of record values, record times, inter record times and formulated the 

theory of record values as a model for successive extremes in a sequence of independently and 

identically distributed random variables. 

Some applications used the inverted Weibull distribution as a model of a variety of failure 

characteristics such as infant mortality, useful life and wear-out periods Khan [14].  

Recently, the growing interest about the estimation of stress-strength reliability,  associated 

with record values have been raised in many fields such as industrial test. The estimation of 

stress-strength  based on lower records is considered by Hassan et al [13] and a further research 

was done by Amal S. et al [2] and Hassan with the title “estimation of Stress-Strength Reliability 

for exponentiated inverted Weibull distribution”. Also, the estimation of stress-strength,  based 

on record values was considered by Baklizi [5] for generalized exponential distribution. 

Subsequent papers extended this work for some lifetime models. For instance, Baklizi [7] for one 

and two parameters exponential distribution, Essam [12] for type I generalized logistic 

distribution, Baklizi [6] for two parameter Weibull distribution, Bahman and Hossein [20] for 

inverse Rayleigh distribution, Al-Gashgari, Shawky [4] for exponentiated Weibull distribution. 

However, this study deals with the estimation of stress-strength reliability of a log-normal 

distribution based on lower record values. The log-normal distribution can serve as an alternative 

to the exponentiated inverted Weibull distribution based on lower record values and in some 

situations, it is an improvement of it in a simpler form.  

 

2. Related Literature 

A great deal of attention has been paid on the estimation of Stress-Strength reliability, 

 using various lifetime distributions and lots of concepts that relate to it. The 

estimation of stress-strength  based on lower records is considered by Hassan et al [13]. His 

work deals with the estimation of , where  and  are two independently 

exponentiated inverted Weibull distribution random variables based on lower record values. It 
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was assumed that the scale parameter is known and both the maximum likelihood estimate and 

the exact confidence interval of  were derived. In addition, the Bayes estimate of  based on 

independent gamma prior for the unknown parameters were obtained under squared error and 

LINEX loss functions. Also, analysis of simulated data was performed to compare the different 

estimators and to investigate the coverage probabilities of confidence interval. It was concluded 

in the paper that the coverage percentage of MLE is better than the coverage percentage of the 

Bayes estimator at . Also, from the result of the study, it was realized that the average 

confidence interval lengths of the MLE are shorter than the corresponding average confidence 

interval lengths of the Bayes estimators. Furthermore, the MSEs of the Bayesian estimator under 

Linear Exponential (LINEX) loss function are less than the Mean Square Errors (MSE) of MLE 

at different exact values of stress-strength reliability function . Generally, based on the study, it 

was concluded that the MLE is better than the Bayes estimates (under squared error and LINEX 

loss functions). 

Also, the estimation of stress-strength,  based on record values was considered by Baklizi 

[5] for generalized exponential distribution. This paper studied inference for the stress–strength 

reliability based on lower records data, where the stress and the strength variables are modelled 

by two independent but not identically distributed random variables from distributions belonging 

to the proportional reversed hazard family. Likelihood and Bayesian estimators were derived, 

then the confidence intervals and credible sets were obtained. Moreover, the paper considered the 

Topp–Leone distribution as a particular case of distribution belonging to the aforementioned 

family and derived some numerical results in order to show the performance of the proposed 

procedures. Finally, two applications to real data were reported. 

Subsequent papers extended this work for some lifetime models. For instance, Baklizi [6] for 

two parameter Weibull distribution, Baklizi [7] for one and two parameters exponential 

distribution, Essam [12] for type I generalized logistic distribution, Bahman and Hossein [20] for 

inverse Rayleigh distribution, Al-Gashgari and Shawky [4] for exponentiated Weibull 

distribution. The prominent theoretical contributions and inference issues of the record values 

have been proposed by Ahsanullah [1].  

 

3. Methodology 

3.1 Likelihood Inference 
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In this section, we obtained the reliability function, , the maximum likelihood estimate 

(MLE) of , six different methods for confidence interval estimation of . We also formulated a 

hypothesis for comparing the means of the two lognormal distributions. 

 

3.2 Reliability Function R 

Let  be the strength of a component which is subjected to the stress, . Assuming that  

 and , the reliability function  such that 

 and  was considered by Nguimkeu et al [18] . However, this      

research is interested in a case where the reliability function is such that:  

. Suppose the joint pdf, is , then the reliability of the component is 

defined as;                      (3.1) 

Since the random variables are statistically independent, then;  so that;            

                                                                     (3.2) 

Suppose , we considered a case where  since the 

considered distribution is non-negative. 

Then                                                                          (3.3) 

In this case, with loss of generality, we can take  to be the standard normal distribution, .  

Thus,                                                                    (3.4) 

Where  is the cumulative distribution function of the standard normal distribution and it is 

known that  which defines the standard Gaussian cdf of .  

Suppose we consider a lognormal random variable  such that   then, 

  and                                                     (3.5) 

So,  

80



 
 

by (3.4) and (3.5), it implies that;                                                              (3.6) 

Therefore,                                                                                      (3.7) 

3.3 MLE of the Reliability Function R 

This section considers estimating  based on lower record values on both variables  and . 

Let  be a set of the first observed lower record values of size  from a 

lognormal (LN) distribution with parameters  and  be a set of the 

first observed lower record values of size  from LN with parameter . Then the 

likelihood function as given by Ahsanullah (2015) is defined as; 

                                                                                         (3.8) 

where,  

                                    (3.9) 

where and  are the pdf and cdf of  and  are the pdf and cdf of  

  respectively. 

The likelihood functions;  

                  (3.10) 

Similarly, 

               (3.11) 

By substituting  and   and using  we have: 

  

Obtaining the log-likelihood of the above, we have; 
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  (3.12) 

By substituting  and  and using , we have:  

 

                                                          

Obtaining the log-likelihood of the above, we have: 

    

           (3.13) 

Therefore, the joint log-likelihood of the observed   and   denoted by   is of the form; 

, hence, 

              

                                                            (3.14) 

To maximize the likelihood function through solving for the first-order conditions, we 

obtain the maximum likelihood estimators of  and  denoted by  and  

based on the first observed lower record values by solving the following equations: 

and 

  

.
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Hence,   or                (3.15) 

Similarly,  

  

 

Hence,   or                           (3.16) 

Also,  

 

Hence,  or              (3.17) 

 

Similarly,  

 

          

Hence,     or                        

(3.18) 
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Equations (3.15) to (3.18) forms the maximum likelihood estimates of  and . 

By the invariance principle, the MLE of  denoted by   can be obtained from  by; 

                            (3.19) 

Where      and .

3.4    Asymptotic Distribution and Confidence Interval 

 

 is a monotone-increasing function of , by finding a confidence bound for , the 

confidence bound for  is obtained Nguimkeu . Since the variances are not 

assumed equal, there exists no exact distribution for , only approximate distributions have been 

proposed in the literature. So we first obtain the asymptotic distribution of . 

We know that;                        

(3.20)     

Thus,    and   . 

Since the unbiased estimators of  and  are  and  respectively, then; 

  and  . 

3.5 Methods of obtaining confidence interval for Reliability Function R 

In this research, we used the parametric method (proposed method) to obtain our confidence 

interval of . Then, we compare the performance of this proposed method to some other existing 

methods in literature namely; Normal Bootstrap Method (NBM), Raiser & Guttman 

approximation (RG), Likelihood-based first order Approximation Method (LBAM), Naïve 

Method (NM) and the Logit Transformation Method (LTM). 

3.5.1     Normal Bootstrap Method (NBM) 

 

The procedure is described as follows: 
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(i) Estimate the parameters ( ,  and ) of the lower record values  and  of the 

random lognormal variables  and  using the maximum likelihood estimate approach. That is, 

obtain ( ,  and ) using (3.15) through (3.18), then estimate  using (3.19). 

(ii) Draw independently a bootstrap sample  of size  from random variable  with the 

same distribution family of  with parameters  and . In a similar procedure, we do the 

same for  of size  with the same distribution family of  with parameters  and . 

(iii) Estimate  using a similar expression for the estimator of , as used in (3.7).  

(iv) Repeat steps (ii) and (iii) B-times (let B=2000), thus obtaining the MLE  . 

(v) Estimate a  percentile bootstrap (boot-n) confidence interval for  from  

distribution is defined as; 

 

                              (3.21) 

 

Where  is a bootstrap estimate of the standard error based on   

3.5.2 The Reiser & Guttman Approach (RG) 

Reiser and Guttman (1986) examined statistical inference for  where  and  are 

independent lognormal variables with unknown mean and variance. They generalized the 

approach used by Geisser and Enis, 1971(who considered the case where  and  ) 

and also, the approach used by Church and Haris, 1970 (who considered the case where  and 

 are known). 

        As shown by Reiser and Guttman (RG), the distribution of   is derived as an approximation 

of Behrens-fisher which take the form of a non-central t-distribution. He stated an approximate 

 percentile of  which is defined as :  

                                                                                                              (3.22) 

where    and    

Hence, the  percentile of  is given by  
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where    and    respectively. 

3.5.3    Likelihood-Based First order Approximation Method (LBAM) 

 

Based on the MLE of  and the log-likelihood function, the confidence interval estimation 

of the parameter,  using the standardized maximum likelihood estimate method (also known as 

the Wald method) which is based on the statistic  and defined by;   

 

                                                                                     (3.23) 

Applying the Delta method to estimate  in the above; we have; 

  

Where  or    and    or  

 

Since  is asymptotically distributed as standard normal, a  percentile of  can 

be approximated by;  

                                                                                   (3.24) 

where  is the  percentile of the standard normal. It should be noted that the Wald 

method is invariant to parameterization. 

3.5.4 Naïve Method (NM) 

 

Having known that  , the distribution of   is asymptotically normal and consequently, 

 is a consistent estimator of   [Church and Haris (2012)]. Thus, an approximate confidence interval for 

 is obtained by;  
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Replacing  by  , where  

It can be easily demonstrated that  with probability probability one; hence, 

(3.23) is a satisfactory approximate confidence interval for . Thus, an approximate confidence 

interval for  is given by; 

                       

(3.25) 

 

3.5.5     Logit Transformation Method (LTM) 

 

In this approach, recalling for the same reason given by Reiser and Guttman, we first estimate the 

asymptotic variance of the maximum likelihood estimator of  which can be obtained by; 

  where ,  

Hence, an approximate  confidence interval for  is given as; 

   where  

Thereby, an approximate confidence interval for  is given as;                  

                                                                                                                  (3.26) 

The variance estimate of  can be employed to build a confidence interval by stabilizing it 

through a proper transformation. For normalizing the transformation , the approximate 

variance is obtained using the Delta method by;  , Sharan (1985). 

Hence the logit transformation as defined by Krishnamoorthy, ) is given 

as; . 

Hence, an approximate  confidence interval is defined as; 

                                                                                             (3.27) 
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where  and  are respectively the lower and upper bound of the confidence interval defined 

below; 

                                                                                                   (3.28) 

3.5.6      Percentile Bootstrap Method (PBM) 

This is an extension and application of parametric bootstrap for identical independent distribution case 

(Efron & Tibshiran, 1994) to a two sample case. It forms the basis of the proposed method considered in 

this research. The procedure is described as follows: 

(i) Estimate the parameters ( ,  and ) of the lower record values  and  of the 

random lognormal variables  and  using the maximum likelihood estimate approach. i.e. 

Obtain ( ,  and ) using , then estimate  using . 

(ii) Draw independently a bootstrap sample  of size  from random variable  with the 

same distribution family of  with parameters  and . In a similar procedure, we do the 

same for  of size  with the same distribution family of  with parameters  and . 

(iii) Estimate  using a similar expression for the estimator of , as used in (3.7).  

(iv) Repeat steps (ii) and (iii) B-times (Let B=2000), thus obtaining the MLE  . 

(v) Estimate a  percentile bootstrap (boot-p) confidence interval for  from  

distribution taking the   and  quantiles. This is defined as;  

 

4. Empirical Results and Discussion  

4.1 Data   

We applied the estimation methods of  as described in the previous section to model the  

Block-Moulding Machine experiment data (of Tola Block industry, Lagos, Nigeria) extracted from 

the robust performance of the machine as reported by the control engineer. 

We are interested in testing the reliability of the component (machine) at the highest operating 

temperature  at which the Operating pressure  distribution tends to be closest to the 

combustion efficiency chamber (strength ). The datasets are given below. 

  : 22.95, 25.65, 24.45, 24.15, 25.20, 24.90, 25.65, 26.25, 24.15, 24.15, 24.00, 25.20, 26.25,  

          24.75, 24.00, 24.30, 26.25, 25.10, 24.35, 22.65 
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  :   11.6100,  11.6625, 11.5845, 11.6685,  11.9430, 11.1705, 12.1065, 11.8425, 12.1110, 11.2455,        

         11.3580,  11.6970, 11.8140,  12.2895, 12.0255, 11.9145,  11.8170, 11.5770, 10.9350, 11.6370 

 

We compute the Cullen and Frey gragh, Empirical and theoretical density, Empirical and 

theoretical CDFs, Q-Q plot  and the P-P plot of the corresponding strength (combustion efficiency 

chamber) and the stress (Operating Pressure) data to ensure that the data fits the lognormal 

distribution. Their corresponding  values are  and  respectively. Figure (i)-

Figure(vi) shows the graphical output and the inspection of the lognormal fit.  

For a more formal test of agreement and analytical purpose with normality (or not), we applied 

the Shapiro-Wilk (S-W) tests for each data set to fit the normal and lognormal model. It was 

observed that for the Combustion Chamber Efficiency (CBE) data and the Operating Pressure (OP) 

data; the S-W Width are  and  with corresponding ;  and  

respectively. While for the log-transformed; the S-W Width are  and  with 

corresponding ;  and  respectively. Furthermore, for the CBE and the OP 

data set, the chisquare values are  and  respectively. Therefore, it is clear that the 

normal and lognormal fits quite well to both data sets. 

Next, we considered the first observed lower record values from the observed data (log-

transformed) as follows;  

   

 

Based on the data above, we obtained the Maximum Likelihood Estimators (MLE) of  

 and  denoted by  and  using  and  

respectively. Hence we have;  

   . 

We first obtain the MLE of  , denoted by . Applying (3.6),    

Thus, the estimate of the reliability,  as defined in (3.19)  is obtained by solving   

recalling that;  . Hence,  
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Therefore,  is the probability that in the Block-Moulding machine experiment, 

the combustion chamber efficiency  is higher than the Operating Pressure  at the highest 

operating temperature .  

 

Figure 1. A Graph for inspecting the fit for the Lognormal Combustion Chamber (Strength) 
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Figure 2. A Graph for inspecting the fit for the Lognormal Operating Pressure (Stress) data 
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We are interested in establishing that there is less than one in a million chances that the 

operating pressure,  may exceed the combustion chamber efficiency strength,  (where we only 

considered the first observed lower record values). We compute the  function of  
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 where   is a specific value of , for the six methods of estimation 

discussed. 

It is of our interest to test the hypothesis;  against the alternative hypothesis; 

. The higher the value of  , the more accurate and reliable is to establish that there is 

less chances that the pressure may exceed the strength. In particular, a value of  bigger than 

0.4574 would mean that the experiment is reliable more than . The lower and upper confidence 

bounds of the various methods is given in Table 1. The table below shows the result for the 

reliability values on Block-Moulding Machine Experiment Data at 90%, 95% and 99% confidence 

intervals (Table 1, below). 

 

 

Methods 

   

Lower            Upper 

Bound            Bound 

Lower             Upper 

Bound            Bound 

Lower           Upper 

Bound          Bound 

RG 0.5274            0.5578  0.5244            0.5607   0.5188          0.5664   

LBAM 0.2229            0.8356   0.1757            0.8741 0.1047          0.9291 

NM 0.2222            0.8362 0.1759            0.8741  0.1041          0.9296 

LTM 0.2321            0.8276    0.1835            0.8651    0.1115          0.9376  

NBM 0.5422            0.5430   0.5421            0.5431    0.5420          0.5432   

PBM 0.5423            0.5432  0.5424            0.5432    0.5423          0.5433   

 

We can carefully observe from Table 1 that the six methods give different results for the 

Block-Moulding Machine Experiment Data. Considering the lower bounds values, it is evident 

that the proposed method (PBM) yields better result than the other five methods described in the 

previous section of the study.  

The confidence intervals calculated according to each of the methods described show that 

the proposed method provides the narrowest interval (this shall be further verified in our 

simulation study). The RG and NBM yields a better result showing a closely approximate result 

with the proposed method. However, the NM and the LTM values are very close to each other 

but far different from the values of other methods applied in the study. 

More so, from the table, we can establish the validity of our hypothesis test. The NBM and 

the PBM (proposed method) provides values of  which are all greater than the estimated  of 

the machine. However, the PMB yields greater values of the two; hence, we can accurately say 
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that there is less chances that the pressure may exceed the strength. In particular, since all the 

PMB values are bigger than 0.4574, it means that the experiment is reliable more than 50%. 

 

4.2 Simulation Study 

In order to study the accuracy of the six methods discussed in our study, a simulation study 

was conducted. We performed a bootstrap based on interval simulation. It is important to note 

that all inferences procedures in this study depend only on the first observed lower record values, 

 and .  

 

              Fi.g 3: 

cdf plot of the Stress-Strength reliability estimates.                      Fi.g 4: Histogram Plot for the simulated reliability estimates 

 

In the simulation design, we used all combinations of sample sizes from; n=5,10,15 & 20 

and m=5,10,15 & 20 and the 90%, 95% and 99% confidence intervals for reliability were 

obtained for each combination of samples. For each combination of the simulation, we generated 

2000 samples of the lower record values from   and 

. 

The confidence intervals are empirically investigated by simulation using the six methods 

discussed. 

We considered different cases, each corresponding to a different combination of 

distributional parameters, thus we obtained different reliability values using the different sample 

sizes as shown in Table 2. Without any loss in generality, we varied the reliability values (three 

values). This was done in order to get a high value for the reliability, since in real practice; we 

usually look for a higher reliability in the study of component or system.  

The reliability values were obtained using the different samples from combinations of 

n=5,10,15 & 20 and m=5,10,15 & 20 which is given below: 

{(n,m)= (5,5), (5,10), (5,15), (5,20), (10,5), (10,10), (10,15), (10,20), (15,5), (15,10), (15,15), 

(15,20), (20,5), (20,10), (20,15), (20,20)} 
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Table 2. Coverage Rate and Expected length of the   Confidence Interval of n (Samples 

from Strength, X) & 

 
m (Samples from Stress, Y) 

    n            m       METHOD EXPECTED LENGTH COVERAGE RATE 
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From the table above, which represents the expected lengths and the coverage rate of the 

simulation results for the 95% confidence interval for the reliability parameter, it is evidently 

94



 
 

shown that our proposed method yields better results than the other five methods described in this 

study. 

The expected length of the NBM and the proposed method are very close, however that of 

the proposed method has a shorter length when carefully observed. The lengths of the LBAM is 

shorter when compared to the other three methods which are all far longer than the PMB and the 

NBM. Hence, in terms of performance, especially when the sample size combinations are very 

small and different, the proposed method (PMB), which possesses the shortest expected lengths, 

is the best.                                                                                                                                                                                                                                

In terms of coverage rate, the proposed method also yields the best coverage rates than the 

others which are all within the standard errors of the nominal values.  

 

5. Conclusion 

This work presented the stress-strength reliability of a component or device to assess 

whether its estimation procedure yields an accurate and robust result. Some previous studies have 

worked on different methods of estimating the reliability, .  

More recently, Nguimkeu et al , proposed that the modified signed log-likelihood 

ratio test yields an accurate result in terms of coverage probability and error rate when they 

considered two independent normal distribution. Also, Tarvirdizade and Kazemzadeh  

also proposed that the percentile bootstrap method yields a better result in terms of coverage 

probability and expected length of confidence intervals when they considered two independent 

but not identically inverse Rayleigh distributed random variables based on lower record values. 

Meanwhile, in our study, we considered two independent lognormal distributions based on lower 

record values. We use a case study of Block-Moulding Machine Experiment whose stress- 

strength data was collected from Tola Block Industry, Lagos, Nigeria. 

This study most important strength is that out of the six methods of estimation described in 

the study, the Percentile Bootstrap Method provides the best performance in terms of expected 

length of confidence interval and good coverage probability. It was found that we can accurately 

say that there is less chances that the machine operating pressure may exceed its strength at the 

highest operating temperature. In particular, all the proposed method values are bigger than our 

estimated reliability value, thus, we realized that the experiment is reliable more than . 

This study has obtained both point and interval estimation procedure for the stress-strength 

reliability of a component which realistically is over  reliable and robust. It also backs it up 

with numerical simulations at various significance levels. Thereby, we can conclude that among 
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the methods discussed in the study, the percentile bootstrap method yields the best and accurate 

results having the shortest expected length and a very good coverage rate.  

 

References 

[1] M. Ahsanullah  “Extreme Value Distributions”, Atlantis Studies in Probability and 

Statistics; Volume 8; ISBN: 978-94-6239-222-9, 2016. 

[2] S. Amal, Hiba Z., Mohammed S. “Estimation of Stress-Strength Reliability for 

Exponentiated Inverted Weibull Distribution Based on Lower Record Values", British 

Journal of Mathematics & Computer Science, 2015; 11(2):1-14. 

[3] B. Alessandro  Confidence Intervals for Reliability of Stress-Strength Models in the 

Normal Case. Communications in Statistics, 2011; 40(6):907-925. 

[4] F. Al-Gashgari , Shawky A. Estimation of P(Y<X) Using Lower Record Data from the 

Exponentiated Weibull Distributions: Classical and MCMC Approaches. Life Science 

Journal, 2014; 11(7):768-777. 

[5] A. Baklizi  Estimation of Pr(X<Y) using Record Values in the One and Two-Parameter  

[6] Exponential Distributions. Communications in Statistics-Theory and methods, 2008; 

37:692-698. 

[7] Baklizi  Inference on Pr(X<Y) in the Two-Parameter Weibull Model Based on Records. 

ISRN Probability and Statistics, 2012; Article ID: 263612: 1-11. 

[8] Baklizi A. Interval Estimation of Stress-strength reliability in the two-parameter 

exponential distribution based on records. Journal of Statistical Computation and 

Simulations, 2013; 84: 2670-2679. 

[9] Baklizi  Bayesian Inference for  in the Exponential Distribution Based on 

Records. Applied Mathematical Modelling, 2014; 38: 1698-1710. 

[10] Basu The estimation of  for distributions useful in life testing. Naval Research 

Logistics Quarterly, 1981; 28:383-392. 

[11] K. Chandler The Distribution and Frequency of record Values. Journal of Royal Society, 

1952. 14:220-228. 

[12]  J. Church The Estimation of Reliability from Stress-Strength Relationships. 

Technometrics, 1970; 12: 49-54.  

[13] A. Essam  The Sampling Distribution of the Maximum Likelihood Estimators from type I 

Generalized Logistic Distribution Based On Lower Record Values. International Journal of  

Contemporary Math. Sciences, 2012; 24:1205-1212. 

[14] Hassan et al. Estimation of Stress-Strength Reliability function Based on Lower Record  

[15] Values. British Journal of Mathematics and Computer Science, 2015; 11(2):1-14. 

[16] M. Khan  Modified Inverse Rayleigh Distribution. Journal of statistics Applications and 

Probability, 2012; 2: 115-132. 

[17] S. Kotz , Lumelskii Y., Pensky M. The Stress-Strength Model and Its Generalizations: 

Theory and Applications, London: Imperial College Press, 2003; ISBN: 978-981-238-057-

9. 

96



 
 

[18] Krishnamoorthy K. et al . New Inferential Methods for the Reliability Parameter in a 

Stress- 

[19] strength Model; The Normal Case. Communication in Statistics Theory and Methods, 

2014; 33:1715-1731. 

[20] M. Mazumdar  Some Estimates of Reliability using Inference Theory. Naval Research 

Logistics Quarterly,1970; 17:159-165. 

[21] Nguimkeu P., Marie R., Augustine W. Interval Estimation of the Stress-Strength Reliability 

with Independent Normal Random Variables. Communication in Statistics Theory and 

Methods, 2014; 15:23-67. 

[22] R.G. Srinivasa  Estimation of Stress-Strength Reliability from Inverse Rayleigh 

Distribution based on lower record values. Journal of Quality and Reliability Engineering, 

2013; 30(4):256-263. 

[23] Bahman T., Hossein K. Interval Estimation of Stress-Strength Reliability Based on Lower 

Record Values from Inverse Rayleigh Distribution. Journal of Quality and Reliability 

Engineering, 2014; 2014: Article ID 192072. 

 

97




